a
Software Quality Assurance Plan

Table of Contents

31
Introduction

31.1
Revision History

31.2
Purpose

31.3
Open Source

41.4
Scope

52
Reference

52.1
References

52.2
Definitions, Acronyms & Abbreviations

123
Software Quality assurance Management

123.1
SQA Management Tasks

123.2
SQA Management Organization and Responsibilities

134
Documentation

145
Standards, Practices, Conventions, and Metrics

156
Reviews and Audits

156.1
Software Requirements Review (SRR)

156.2
Preliminary Design Review (PDR) and Critical Design Review (CDR)

156.3
Software V&V Plan Review

156.4
Functional and Physical Audits

156.5
In-Process Audits

156.6
Managerial Reviews

166.7
Software Configuration Management Plan Reivew (SCMPR)

177
Test

188
Problem Reporting and Corrective Actions

189
SQA Tools, Techniques, and Methodologies

1810
Code Control

1811
Media Control

1912
Supplier Control

1913
SQA Records Collection, Maintenance, and retention

1914
Training

1915
Risk Management

Note: All trademarks and registered trademarks contained herein are the property of their respective owners. Plantation Productions, Inc., does not claim ownership of any trademarks within this document other than those specifically owned by Plantation Productions, Inc.

Note: TRIGA™ is a registered trademark of General Atomics, Inc.

1 Introduction
The Plantation Productions, Inc., DAQ System is a set of hardware circuit boards and firmware that provide data acquisition and control functionality. Although originally intended for TRIGA™ research reactor data acquisition and control the DAQ System is sufficiently generic that it can be use for arbitrary systems requiring analog and digital I/O.
1.1 Revision History

Revision 1.0: Randall Hyde Sept 26, 2017

1.2 Purpose

This document describes the Software Quality Assurance Plan (SQAP) for the Plantation Productions' Open Source/Open Hardware digital data acquisition system. The purpose of this QA plan is to describe quality assurance procedures and policies Plantation Productions’ Open Source/Open Hardware DAQ (data acquisition and control) hardware and software.

Although this is technically a software quality assurance plan, it will also describe the hardware quality assurance procedures for various hardware items in the DAQ System. This document describes the quality assurance plan for the following products:

· DAQ_IF: DAQ Interface board

· PPDIO96: 96-bit digital I/O board

· PPAIO-16/4: 16-input, 4-output analog I/O board

· PPRelay-12: 12-output mechanical relay board (+4 TTL outputs)

· PPSSR-16: 16-output solid-state relay board

· PPRlyio-12: 12-channel digital I/O board with relays

· PPOpto-12: 12-channel optical isolator for digital inputs

· PPAC4: 4-channel analog conditioning module

· PPAC420: 8-channel 4-20mA analog signal conditioning

· PPDO-48: 48-channel digital output module
· Firmware for the Netburner MOD54415 module (that controls the above boards)

· Test applets for various hardware modules

· Application automated test suite for the firmware
This quality assurance plan will cover the software and hardware lifecycle from initial development through branching the system for a site-specific implementation.

1.3 Open Source

The DAQ System documentation, software, and hardware is covered under the Creative Commons (CC BY 4.0) found here:

https://creativecommons.org/licenses/by/4.0/
For the purposes of attribution, all work must be attributed to "Randall Hyde, Plantation Productions, Inc., Copyright 2017"

This document has been developed per the guidance provided in IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans.
1.4 Scope
This document covers the software quality assurance plan of the Open Source/Open Hardware products in the DAQ System product line created by Plantation Productions, Inc. It covers the QA plan for the basic hardware and software modules created by Plantation Productions, Inc., as stand-alone objects. Creation of implementation-dependent (site-dependent) combinations of these products is beyond the scope of this document.

2 Reference
2.1 References
NOTE:
Listing of a document in this references section means that the reference was used in the development of this document and does not mean that this document or testing comply with that reference.
2.1.1 Government Regulations, Standards and Publications

	Issued By
	Document Identity
	Title

	NRC
	RG 1.170
	Software Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

2.1.2 Industry Standards

	Issued By
	Document Identity
	Title

	IEEE
	IEEE Std 610.12-1990
	IEEE Glossary of Software Engineering Terminology

	IEEE
	IEEE Std 730-1998
	IEEE Standard for Software Quality Assurance Plans

	IEEE
	IEEE Std 828-1998
	IEEE Standard for Software Configuration Management Plans

	IEEE
	IEEE Std 829-1998
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 829-2008
	IEEE Standard for Software Test Documentation

	IEEE
	IEEE Std 1008-1987
	IEEE Standard for Software Unit Testing

	IEEE
	IEEE Std 1012-2004
	IEEE Standard for Software Verification and Validation

2.2 Definitions, Acronyms & Abbreviations
Note: many of these definitions were taken directly from IEEE Std 829-2008.

	Acceptance Testing
	 (A) Testing conducted to establish whether a system satisfies its acceptance
criteria and to enable the customer to determine whether to accept the system. (B) Formal testing conducted

to enable a user, customer, or other authorized entity to determine whether to accept a system or

component. This is analogous to qualification testing in IEEE/EIA Std 12207.0-1996 [B21]. Another

commonly used synonym is validation testing.

	Activity
	 An element of work performed during the implementation of a process. An activity normally
has an expected duration, cost, and resource requirements. Activities are often subdivided into tasks.

	Address
	 To deal with, to take into consideration; (specifically) to decide whether and when a defined documentation topic is to be included, either directly or by reference to another document. Make a decision as to whether an item is to be recorded prior to the test execution (in a tool or not in a tool), recorded during the test execution, recorded post-test execution, not recorded (addressed by the process), or excluded.

	Anomaly
	 Anything observed in the documentation or operation of software or system that deviates
from expectations based on previously verified software products, reference documents, or other sources of indicative behavior. (adopted from IEEE Std 610.12-1990 [B3])

	Branch Metric
	The result of dividing the total number of modules in which every branch has been executed at least once by the total number of modules.

	CDR
	Critical Design Review

	Checkout
	 Testing conducted in the operational or support environment to ensure that a software product performs as required after installation. (adopted from IEEE Std 610.12-1990 [B3])

	Component
	One of the parts that make up a system. A component may be hardware or software and may be subdivided into other components. Note: The terms “module,” “component,” and “unit” are often used interchangeably or defined to be sub elements of one another in different ways depending upon the context. The relationship of these terms is not yet standardized.

For this plan, a component is defined as the combination of units and modules that are included in the source files required for a major software task.
 (adopted from IEEE Std 610.12-1990 [B3])

	Component Integration Testing
	 Testing of groups of related components.

	Component Testing
	 Testing of individual hardware or software components. (adopted from IEEE Std 610.12-1990 [B3])

	Control Point
	A project agreed on point in time or times when specified agreements or controls are applied to the software configuration items being developed, e.g., an approved baseline or release of a specified document/code.

	Criticality
	 The degree of impact that a requirement, module, error, fault, failure, or other characteristic has on the development or operation of a system. (adopted from IEEE Std 610.12-1990 [B3])

	Critical Software
	Software whose failure would impact safety or cause large financial or social losses.

	Decision Point Metric
	The result of dividing the total number of modules in which every decision point has had 1) all valid conditions, and 2) at least one invalid condition, correctly processed, divided by the total number of modules.

	Development Testing
	 Testing conducted to establish whether a new software product or softwarebased system (or components of it) satisfies its criteria. The criteria will vary based on the level of test being performed.

	Document
	 (A) A medium, and the information recorded on it, that generally has permanence and can be read by a person or a machine. Examples in software engineering include project plans, specifications, test plans, and user manuals. (B) To create a document as in (A). (adopted from IEEE Std 610.12-1990 [B3])

	Documentation
	 (A) A collection of documents on a given subject. (B) Any written or pictorial information describing, defining, specifying, reporting, or certifying activities, requirements, procedures, or results. (C) The process of generating or revising a document. (D) The management of documents, including identification, acquisition, processing, storage, and dissemination. (adopted from IEEE Std 610.12-1990 [B3])

	Domain Metric
	The result of dividing the total number of modules in which one valid sample and one invalid sample of every class of input data items (external messages, operator inputs, and local data) have been correctly processed, by the total number of modules.

	Error Message Metric
	The result of dividing the total number of error messages that have been formally demonstrated, by the total number of error messages.

	Feature
	 A distinguishing characteristic of a system item (includes both functional and nonfunctional attributes such as performance and reusability).

	Functional Testing
	(1) Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to selected inputs and execution conditions. (2) Testing conducted to evaluate the compliance of a system or component with specified functional requirements. [IEEE Std 610.12-1990]

	HCM
	Hardware Configuration Management

	Integration Testing
	 Testing in which software components, hardware components, or both are combined and tested to evaluate the interaction among them. This term is commonly used for both the integration of components and the integration of entire systems. (adopted from IEEE Std 610.12-1990 [B3])

	Integrity Level
	 (A) The degree to which software complies or must comply with a set of stakeholder-selected software and/or software-based system characteristics (e.g., software complexity, risk assessment, safety level, security level, desired performance, reliability, or cost), defined to reflect the importance of the software to its stakeholders. (B) A symbolic value representing this degree of compliance within an integrity level scheme.

	Integrity Level Scheme
	 A set of system characteristics (such as complexity, risk, safety level, security level, desired performance, reliability, and/or cost) selected as important to stakeholders, and arranged into discrete levels of performance or compliance (integrity levels), to help define the level of quality control to be applied in developing and/or delivering the software.

	Interface Requirements Specification (IRS)
	 Documentation that specifies requirements for interfaces between or among systems or components. These requirements include constraints on formats and timing. This may be included as a part of the Software Requirements Specification. (adopted from IEEE Std 610.12-1990 [B3] and IEEE Std 1012TM -2004 [B10])

	Life Cycle Processes
	 A set of interrelated activities that result in the development or assessment of software products. Each activity consists of tasks. The life cycle processes may overlap one another.

	Minimum Tasks
	 Those tasks required for the integrity level assigned to the software to be tested.

	Normal Operating Condition
	Condition of the console when the console is operational and no unexplained statuses are present

	Operational
	 (A) Pertaining to a system or component that is ready for use in its intended environment. (B) Pertaining to a system or component that is installed in its intended environment. (C) Pertaining to the environment in which a system or component is intended to be used. (adopted from IEEE Std 610.12-1990 [B3])

	Operational Testing
	 Testing conducted to evaluate a system or component in its operational environment. (adopted from IEEE Std 610.12-1990 [B3])

	Optional Tasks
	 Those tasks that may be added to the minimum testing tasks to address specific requirements. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	PDR
	Preliminary Design Review

	Process
	 A set of interrelated activities, which transform inputs into outputs.

	Qualification Testing
	 Conducted to determine whether a system or component is suitable for operational use. See also: acceptance testing ; development testing ; operational testing.

	Quality
	 (A) The degree to which a system, component, or process meets specified requirements. (B) The degree to which a system, component, or process meets customer or user needs or expectations. (adopted from IEEE Std 610.12-1990 [B3])

	Quality Assurance
	A planned and systematic pattern of all actions necessary to provide adequate confidence that the item or product conforms to established technical requirements.

	Release
	The formal notification and distribution of an approved version.

	Regression Testing
	Selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements. [IEEE Std 610.12-1990]

	Request for Proposal (RFP)
	 A document used by the acquirer as the means to announce its intention to potential bidders to acquire a specified system, software product, or software service. (adopted from IEEE Std 1074-2006 [B17])

	Required Inputs
	 The set of items necessary to perform the minimum testing tasks mandated within any life cycle activity. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Required Outputs
	 The set of items produced as a result of performing the minimum testing tasks mandated within any life cycle activity.

	Requirements Demonstration Metric
	The result of dividing the total number of separately-identified requirements in the software requirements specification (SRS) that have been successfully demonstrated by the total number of separately-identified requirements in the SRS.

	Reusable Product
	 A product developed for one use but having other uses, or one developed specifically to be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to, commercial off-the-shelf (COTS) products, acquirer-furnished products, products in reuse libraries, and preexisting developer products. Each use may include all or part of the product and may involve its modification. This term can be applied to any software or system product (for example, requirements or architectures), not just to software or system itself. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Risk
	The combination of the probability of occurrence and the consequences of a given future undesirable event. Risk can be associated with software and/or systems. (B) The combination of the probability of an abnormal event or failure and the consequence(s) of that event or failure to a system’s components, operators, users, or environment. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Scenario
	 (A) A description of a series of events that may occur concurrently or sequentially. (B) An account or synopsis of a projected course of events or actions. (adopted from IEEE Std 1362TM-1998 [B20]) (C) Commonly used for groups of test cases; synonyms are script, set, or suite.

	SCM
	Software Configuration Management

	SCMP
	Software Configuration Management Plan

	SCMPR
	Software Configuration Management Plan Review

	SDD
	Software Design Description

	Software
	 Computer programs, procedures, and possibly associated documentation and data pertaining to the operation of a computer system. (adopted from IEEE Std 610.12-1990 [B3])

	Software-Based Systems
	 Computer systems that are controlled by software.

	Software Design Description (SDD)
	 A representation of software created to facilitate analysis, planning, implementation, and decision making. The software design description is used as a medium for communicating software design information, and it may be thought of as a blueprint or model of the system. (adopted from The Authoritative Dictionary of IEEE Standards Terms [B2])

	Software Requirements Specification (SRS)
	 Documentation of the essential requirements (functions, performance, design constraints, and attributes) of the software and its external interfaces. (adopted from IEEE Std 610.12-1990 [B3])

	SQA
	Software Quality Assurance

	SQAP
	Software Quality Assurance Plan

	SRR
	Software Requirements Review

	SRS
	Software Requirements Specification

	STC
	Software Test Case

	STP
	Software Test Procedure

	SVVP
	Software Verification and Validation Plan

	SVVPR
	Software Verification and Validation Plan Review

	SVVR
	Software Verification and Validation Report

	Systems Integration Testing
	 Testing conducted on multiple complete, integrated systems to evaluate their ability to communicate successfully with each other and to meet the overall integrated systems’ specified requirements.

	SyRS
	System Requirements Specification

	System Testing
	 Testing conducted on a complete, integrated system to evaluate the system’s compliance with its specified requirements. (adopted from IEEE Std 610.12-1990 [B3])

	Task
	 (A) The smallest unit of work subject to management accountability. A task is a well-defined work assignment for one or more project members. Related tasks are usually grouped to form activities. (adopted from IEEE Std 1074-2006 [B17]). (B) In Micro-C/OS a task is synonymous with a thread of execution.

	Test
	 (A) A set of one or more test cases. (B) A set of one or more test procedures. (C) A set of one or more test cases and procedures. (adopted from IEEE Std 610.12-1990 [B3] (D) The activity of executing (A), (B), and/or (C).

	Test Approach
	 A particular method that will be employed to pick the particular test case values. This may vary in specificity from very general (e.g., black box or white box) to very specific (e.g., minimum and maximum boundary values).

	Test Case
	 (A) A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. (B) Documentation specifying inputs, predicted results, and a set of execution conditions for a test item. (adopted from IEEE Std 610.12-1990 [B2])

	Test Class
	 A designated grouping of test cases.

	Test Design
	Documentation specifying the details of the test approach for a software feature or combination of software features and identifying the associated tests (commonly including the organization of the tests into groups). (adopted from IEEE Std 610.12-1990 [B2])

	Test Effort
	 The activity of performing one or more testing tasks.

	Test Level
	 A separate test effort that has its own documentation and resources (e.g., component, component integration, system, and acceptance).

	Testing
	(1) The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component. (2) The process of analyzing a software item to detect the differences between existing and required conditions (that is, bugs) and to evaluate the features of the software items. [IEEE Std 610.12-1990].

	Testing Task Iteration
	 A task that is re-performed during maintenance after having been originally performed during development.

	Test Item
	 A software or system item that is an object of testing.

	Test Plan
	 (A) A document describing the scope, approach, resources, and schedule of intended test activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning. (B) A document that describes the technical and management approach to be followed for testing a system or component. Typical contents identify the items to be tested, tasks to be performed, responsibilities, schedules, and required resources for the testing activity. (adopted from IEEE Std 610.12-1990 [B2]) The document may be a Master Test Plan or a Level Test Plan.

	Test Procedure
	 (A) Detailed instructions for the setup, execution, and evaluation of results for a given test case. (B) A document containing a set of associated instructions as in (A). (C) Documentation that specifies a sequence of actions for the execution of a test. (adopted from IEEE Std 982.1TM-2005 [B7])

	Testware
	 All products produced by the testing effort, e.g., documentation and data.

	UDR
	User Documentation Review

	User Documentation
	 All documentation specifically written for users of a system, such as online help text and error messages, compact disc or hard copy system description, technical support manual, user manual, all system training materials, and release notes for patches and updates.

	Validation
	 (A) The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements. (adopted from IEEE Std 610.12-1990 [B3]) (B) The process of providing evidence that the software and its associated products satisfy system requirements allocated to software at the end of each life cycle activity, solve the right problem (e.g., correctly model physical laws, implement business rules, or use the proper system assumptions), and satisfy intended use and user needs.

	Verification
	 (A) The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. (adopted from IEEE Std 610.12-1990 [B3]) (B) The process of providing objective evidence that the software and its associated products comply with requirements (e.g., for correctness, completeness, consistency, and accuracy) for all life cycle activities during each life cycle process (acquisition, supply, development, operation, and maintenance), satisfy standards, practices, and conventions during life cycle processes, and successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle activities (e.g., building the software correctly).

The terms and definitions from IEEE Std 610.12-1990, not explicitly present here, are incorporated herein by reference.

3 Software Quality assurance Management
3.1 SQA Management Tasks

This SQAP shall cover the initial development of the DAQ System up to the point it is branched for site-specific use. The creation of requirements and other documents, as well as the verification of these documents and their associated development activities is the primary task of of software quality assurance on the DAQ System project.
3.2 SQA Management Organization and Responsibilities

Plantation Productions, Inc., is a small shop. One person is responsible for engineering management, development, testing, and quality assurance. Plantation Productions’ engineer performs each of these tasks according to industry best practices. However, …

As a single person taking responsibility for development, testing, and quality assurance is unacceptable in ethical and software engineering practice, software quality assurance for the DAQ System cannot be left totally in the hands of Plantation Productions, Inc. Whomever utilizes the DAQ System components must take responsibility to follow standard engineering practices (e.g., as described by IEEE standards documents) for quality assurance and testing. Any organization making use of the DAQ system must provide sufficient resources for QA and testing to separate development (by Plantation Productions, Inc.) from testing and QA.
Plantation Productions’ engineering staff has followed the standard engineering practices as best as can be done by a single person. However, though Plantation Productions, Inc., has certainly run a set of formal tests on the DAQ System to help ensure confidence in the quality of the system, Plantation Productions’ DAQ System cannot formally take credit for these tests as they were run by the developer of the system. To take credit for the formal tests, they must be run by someone other than the developer. This must be handled by the organization (outside Plantation Productions, Inc.) that is using the DAQ System hardware and software.

It is also the responsibility of the external organization to verify that the DAQ System requirements meet the requirements of that organization and validate that the DAQ System properly implements those requirements. Plantation Productions, Inc., has written much of the documentation required by the IEEE guidelines for (software) development. This can serve as the template for any documents other organzations might need to produce.

4 Documentation
This section of the SQAP identifies the various documents and describes how to check them for adequacy and conformance.
4.1.1 QA Documentation

· DAQ SQAP.doc: Software Quality Assurance Plan

· DAQ ConfigMgmt.doc (this document): configuration management plan

· DAQ SVVP.doc: Software verification and validation plan

· DAQ SVVR.doc: Software verification and validation report

· DAQ TestPlan.doc: test plan document

· DAQ SyRS.doc: DAQ System Requirements (functional requirements) documentation

· DAQ HRS.doc: DAQ Hardware Requirements documentation

· DAQ HDD.doc: DAQ Hardware Design Description documentation

· DAQ HI.doc: DAQ Hardware Inspection/Review documentation

· DAQ HTC.doc: DAQ Hardware Test Cases documentation

· DAQ HTP.doc: DAQ Hardware Test Procedures documentation

· DAQ SRS.doc: DAQ Software Requirements Specification documentation

· DAQ SR.doc: DAQ Software Review documentation

· DAQ SDD.doc: DAQ Software Design Description documentation

· DAQ STC.doc: DAQ Software Test Cases documentation

· DAQ STP.doc: DAQ Software Test Procedures documentation

· DAQ_traceabilityMTX.xlsx: DAQ Traceability Matrix

· DAQ Pgm.doc: DAQ System Programmer’s Manual documentation

The SVVP describes how the documents in the DAQ System shall be verified and validated. The SVVR is the report describing the results of the V&V effort. The test plan lays out how testing will take place (particularly at a site other than Plantation Productions, Inc.).

5 Standards, Practices, Conventions, and Metrics
The DAQ System documentation follows, as closely as reasonable, the IEEE standards for software development (see preceding sections for the IEEE-based documentation).

Plantation Productions, Inc., maintains its own internal coding standards (based on many industry best-practices) that attempt to keep the code as readable and maintainable as possible. Of course, different people have different ideas concerning coding and code commentary, but Plantation Productions strives to keep the code as acceptable as possible to a wide coder audience.
Plantation Productions, as much as possible (developer/tester being the primary exception), follows industry standards for test development and test performance. Because of the resource limitations at Plantation Productions concerning test engineers, Plantation Productions must defer formal test to whatever organization decides to deploy the DAQ System. However, Plantation Productions has created the test procedures (and in certain cases, automated test procedures) for the equipment. Of course the generic test procedures for the DAQ System that appear in the documentation set do not directly apply to a site-specific DAQ System toplogy (arrangement of DAQ boards in a system); so whomever creates the site-specific topology must also create their own site-specific test procedures. However, because Plantation Productions documentation follows IEEE guidelines and recommendations, it can serve as a template for site-specific documentation.

For in-house testing, Plantation Productions strives to achieve 100% code coverage (domain metric) and 100% requirements coverage (requirements demonstration metric). For the firmware software tests, Plantation Productions uses an automated test procedure that provides exhaustive testing for many (correct) inputs to the system.
6 Reviews and Audits

Because the DAQ System was originally created, designed, and implemented by a single individual, many of the standard reviews and audits don’t make sense during the development process.

6.1 Software Requirements Review (SRR)

Several informal SRRs took place during the initial and later stages of the development of the System Requirements (SyRS) and software Requirement (SRS) Specification stages. Several requirements wound up be removed, new ones added, and several were changed during this process (deleted requirement usually appear at grayed text in the SyRS and SRS documents).

Future plans for SRRs include an SRR whenever the need for a new branch of the DAQ System arises or when adding a new component to the DAQ System (for example, a new PPDO-48 48-channel output board design is being finalized as this is being written).

6.2 Preliminary Design Review (PDR) and Critical Design Review (CDR)

Because of the iterative design nature of the DAQ System, the Software Design Description was not created prior to software development (as would be the normal case in the waterfall software development model). Instead, the SDD serves as a design description for those wanting to understand how the software operates (with an eye on modifying or maintaining the software). As the SDD was written after the fact (that is, after initial software development was complete), the PDR and CDR do not make sense in this context. In lieu of the CDR, the software verification and validation (developing the traceability matrix, developing the test procedures, and running the test procedures) ensures that the software design faithfully implements the requirements in the SRS.
6.3 Software V&V Plan Review

The software verification and validation plan review was a relatively trivial process (due to “one-man shop” operation at Plantation Productions, Inc., to evaluation the completeness of the SVVP.

6.4 Functional and Physical Audits
Because the DAQ System is a set of software tools and hardware modules upon which final data acquisition systems can be built, a functional audit on the generic DAQ System makes no sense. Instead, functional audits will be held on branches of the DAQ System that are built around site-specific DAQ System topologies. This is also true for physical audits, as the software/hardware and its documentation will be specific to the branch.
6.5 In-Process Audits
Again, because of the small-shop development of the DAQ System, in-process audits were very informal – mainly unit tests and other types of reviews. As such, formal in-process audits aren’t really applicable to the DAQ System (at least, up to a given branch).

6.6 Managerial Reviews

Managerial reviews exist to periodically review the adherence of the development process to the SQAP. As such reviews must be help by an organization outside (independent) of the development organization, such reviews must be handled by an organization working on a branch (site-specific implementation) of the DAQ System.

6.7 Software Configuration Management Plan Reivew (SCMPR)

Plantation Productions, Inc., has its own software configuration management plan (see DAQ ConfigMgmt.doc). However, as with many quality assurance documents a separate software configuration management plan must be created for each branch of the DAQ System and management in charge of such a branch should create their own SCMP and review it.

7 Test
All tests for the basic DAQ System are covered in the Software Test Procedure (STP) and Hardware Test Procedure (HTP). This testing is covered in the Software Verification & Validation Plan and warrants no futher discussion here.

8 Problem Reporting and Corrective Actions
Plantation Productions, Inc., maintains a “light process initial development” model. That is, up until the initial software release (v1.0) the development process is kept as lightweight as possible in order to keep development costs down. This generally means working from a set of system and software requirements during initial development and a software test procedure during initial testing (not formal testing, which requires a third-party test engineer). Until the first formal release is made for testing (not deployment), there is no formal mechanism for reporting and tracking defects in the system (this, by the way, is standard operating procedure at most organizations – it’s too expensive to require formal defect tracking during initial software development and unit testing).
Once the software reaches the stage where it goes into formal testing (for example, when delivering a site-specific branch of the DAQ System to a customer), defect reporting and tracking becomes a formal process. Ideally, a commercial or open-source defect tracking system (e.g., Trac, Redmine, and Bugzilla) would provide an easy-to-use data base of defects. However, because of the nature of the DAQ System (branches to sites, each of which might have their own defect-tracking system in place) Plantation Productions shall manually maintain a database of defects reported in the system and make this list available on the Plantation Productions, Inc’s, website.
When a defect is found in the system or a branch being maintained by Plantation Productions, Inc., the discoverer of the defect shall report that defect (preferably by email) with appropriate information documenting the defect and how to replicate it. Plantation Productions, Inc., shall review the defect report and decide how to deal with it. Plantation Productions shall report the results of the review (and any corrections) on the Plantation Productions’ website.

9 SQA Tools, Techniques, and Methodologies

In order to make the DAQ System SQA process as widely applicable as possible, Plantation Productions, Inc., shall maintain the QA process as manually as is possible. Plantation Productions shall use Microsoft Word-compatible documents with as few special features as possible (making it easy to load the documents into other programs such as Apple’s Pages software).

10 Code Control

In order to make the configuration management system as widely applicable as possible, Plantation Productions, Inc., shall maintain the configuration management process as manually as is possible. Plantation Productions shall use Microsoft Word-compatible documents with as few special features as possible (making it easy to load the documents into other programs such as Apple’s Pages software). Files will be compressed (“zip” files) and stored on the Plantation Productions’ website in historical (chronological) order. Note that Plantation Productions will maintain the baseline code on the website; branches (site-specific) implementations may not appear as they may containing proprietary code or information.
11 Media Control

Plantation Productions, Inc., shall maintain all files on the website (as well as local servers at Plantation Productions, Inc.). As the software is open-source, there are no issues with unauthorized access to the code and documentation. The disposition of media for branches of the DAQ System will be made according to the requirements of the customer/organization for whom the branch is created.

12 Supplier Control

This section is not applicable to the DAQ System.

13 SQA Records Collection, Maintenance, and retention

All documentation associated with the DAQ System shall be maintained on the Plantation Productions, Inc., website. As information on the Internet is available in perpetuity, even if Plantation Productions’ website disappears the information will probably be available on some site that caches website data. Therefore, no documentation should be created that must have a limited lifetime associated with it.

14 Training

There is no specific training associated with Plantation Productions’ SQA documentation. Should some organization desire training, Plantation Productions, Inc., can arrange such training at nominal contracting rates.

15 Risk Management

Risk management is inapplicable to the standard SQA documentation. Risk management is an issue that should be considered when creating a branch for a specific customer.
	
	PPDAQ

Plantation Productions' Data Acquisition System
	PPDAQ-STP
Page 1

